When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition

نویسندگان

  • Xiang Xu
  • Pengfei Dou
  • Ha A. Le
  • Ioannis A. Kakadiaris
چکیده

Most of the face recognition works focus on specific modules or demonstrate a research idea. This paper presents a pose-invariant 3D-aided 2D face recognition system (UR2D) that is robust to pose variations as large as 90◦ by leveraging deep learning technology. The architecture and the interface of UR2D are described, and each module is introduced in detail. Extensive experiments are conducted on the UHDB31 and IJB-A, demonstrating that UR2D outperforms existing 2D face recognition systems such as VGG-Face, FaceNet, and a commercial off-the-shelf software (COTS) by at least 9% on the UHDB31 dataset and 3% on the IJB-A dataset on average in face identification tasks. UR2D also achieves state-of-the-art performance of 85% on the IJB-A dataset by comparing the Rank-1 accuracy score from template matching. It fills a gap by providing a 3D-aided 2D face recognition system that has compatible results with 2D face recognition systems using deep learning techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

3D Face Recognition using Patch Geodesic Derivative Pattern

In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...

متن کامل

Pose - Invariant Multimodal ( 2 D + 3 D ) Face Recognition using Geodesic Distance Map

In this paper, an efficient pose-invariant face recognition method is proposed. This method is multimodal means that it uses 2D (color) and 3D (depth) information of a face for recognition. In the first step, the geodesic distances of all face points from a reference point are computed. Then, the face points are mapped from the 3D space to a new 2D space. The proposed mapping is robust under th...

متن کامل

Pose-Invariant Face Recognition Using A Single 3D Reference Model

Approaches for cross-pose face recognition can be categorized into 2D image based and 3D model based. However, only a small number of 3D model based approaches are reported although 3D information is considered crucial for cross-pose analysis. Extended from a latest face reconstruction method using a single 3D reference model, this study focuses on using the reconstructed 3D face for recognitio...

متن کامل

3D Aided Face Recognition across Pose Variations

Recently, 3D aided face recognition, concentrating on improving performance of 2D techniques via 3D data, has received increasing attention due to its wide application potential in real condition. In this paper, we present a novel 3D aided face recognition method that can deal with the probe images in different viewpoints. It first estimates the face pose based on the Random Regression Forest, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06532  شماره 

صفحات  -

تاریخ انتشار 2017